

酶与人

云支教全国标准课程1.0版

CONTENTS

\$=

01

目的

02

任务

2=

03

活动步骤

04

材料清单

目的

认识生活中常见的六种酶;

对酶与生产、生活和生命的作用有进一步的理解;

激发探索酶世界的兴趣

任务

通过找同伴游戏和讨论,了解常见的六种酶的特点、作用;

通过"酶与人的关系"活动,讨论并理解酶对人类的生产、生活和生命的作用。

活动步骤

- ◆ 老师将写有生活中常见的 6 种酶特征的若干纸条放入信封中。(纸条的总数量应与参加活动的学生数量相同;描述每种酶的特征的纸条数量应相同。)
- 每名同学从信封中抽取一张小纸条。认真阅读纸条上关于某种酶的特征的描述。
- ♀ 所有同学根据纸条上的描述,寻找拿着属于同一种酶的特征纸条的其他同学,直到找到所有同伴为止。找到同伴的学生们站在一起,自然地分成6个小组。

- 大家一起帮助找错了同伴的同学找到自己应该所属的小组,并说出理由。

活动步骤

- ♀ 请每组进行讨论,本组的这种酶与人们的生活、生命健康的关系。选一个代表向大家介绍本组的 这种酶的完整特征以及对我们生活的意义。
- 老师发给每组一张大白纸和彩色笔。请每个小组在大白纸上画一个大大的人的轮廓。
- 小组进行充分讨论,然后将人与酶的关系标注在人的轮廓的各个部分。比如眼睛里有溶菌酶,口腔的唾液里有淀粉酶,身上穿的衣服要清洗会用含有多种酶的洗衣粉等等。
- 请每组把绘制的图贴在黑板上,然后选派代表向大家展示分享本组讨论和绘制的结果。
- 老师引导学生们一起讲各组讨论绘制的结果进行归纳总结,梳理出至少5条酶与人类的生产、生活和生命的关系。
- ♀ 还可以请同学们说一说自己特别想了解的有关酶的内容。

材料清单

大白纸若干,

写好 6 种酶特征的纸条,

彩色笔,胶带,剪子。

果胶酶

它能澄清果汁 它能破坏植物的细胞壁 它大多存在于高等植物微生物中 它在蜗牛中也存在 可以从植物中提取它,但是产量低 黑曲霉发酵能够提取到它 它是一种线黄色的粉末 它发挥作用最适宜的温度是 50℃ PH3.0 左右它能发挥出最佳作用 它是水果加工中最重要的酶 它的最佳贮藏温度是 4-15℃,需要避免阳光直射 它还能被用作消炎制剂,外用在烧伤的皮肤上可以减少疤痕增生

淀粉酶

它广泛地分布在动物、植物和微生物中 它是大家族。其中的一种成员存在于我们的唾液中,由于它的作用,嚼馒头会觉得越嚼越甜 我们身体里的胰脏能够分泌它帮助消化 它的家族中的一种成员能够使淀粉黏度迅速下降 它的家族中的某些成员被广泛用于改良面团,生产面包,增加含糖量,缓和面包老化 它经常被用于葡萄糖、饴糖等的生产 它是一种生产最早、应用最广、产量最大的一种酶 它的产量占整个酶制剂总产量的50%以上 它能够分解淀粉或糖原 它可以被用作药物制剂的辅料 人体血清中它的含量高低可以用来判断是否有胰腺炎 用它分解织物上的浆料,速度快而且用水量少,很环保

蛋白酶

它能够分解蛋白质 它广泛存在与动物内脏、植物茎叶果实和微生物中 要使肉类比较嫩,就要用到它 它能够降低面筋的筋力,使饼干更酥脆 它的一个种类存在与我们胃部的胃酸中 它的一个种类是从木瓜中提取的,在酸性、中性和碱性环境下都能分解蛋白质 皮革工业的脱毛和软化已大量利用它 它可以用作药用,治疗消化不良等疾病 洗衣粉中因为含有它,所以能去除衣物上的血渍和蛋白污物 在面包生产中,它的作用主要表现在面团的发酵过程中 我们的身体中如果没有这种酶,就难以消化食物中的蛋白质 它的一些种类能够参与调节凝血等细胞活动

溶菌酶

它普遍存在于鸟类、家禽的蛋清中 它在哺乳动物的眼泪、乳汁和组织细胞中 它也存在于哺乳动物的血液和鼻涕中 在萝卜、卷心菜等植物中也能分离出它 它能从鸡蛋清中提取 它能够分解细菌坚韧的细胞壁,使细菌溶解死亡 它具有抗菌、消炎、抗病毒等作用 它在酸性介质中可以稳定存在,在碱性介质中容易失去活性 用它制成药品,用于急慢性咽喉炎、扁平苔癣、扁平疣等疾病的治疗 它是很稳定的蛋白质,有较强的抗热性。 它比较适宜 pH5.3—6.4 的环境 它是安全性高的天然食品防腐剂

纤维素酶

它是一种复合酶 它能够分解纤维素生成葡萄糖

它广泛存在于生物体中,细菌、真菌和一些动物体内都能产生 在进行酒精发酵时,添加它可以增加原料的利用率 它可以提高饲料利用率,改善饲料的营养价值 它是农业生产中不可缺少的酶之一 过酸、过碱和高温都会使它失去活性 它很难提纯

它能保证动物正常的消化吸收功能,起到防病,促生长的作用 它能维持小肠绒毛形态完整,促进营养物质吸收 人体内没有它

它是 1906 年被发现的

酒曲酶

它里面的霉菌能起到糖化功能,将淀粉转化成糖 它里面的酵母菌起到发酵的作用,可以将糖转化成酒精。 它是酿酒必需的 它是一个大家族,酿造不同的酒,会加入它的家族中不同的成员 它是中国酿酒的精华所在 对它的利用是中国人的一大发明创造 中国的酒绝大多数是用它酿造的 它有多种菌种和酶组成的 它是一种酶制剂 甜甜的米酒也是因为有它才能制成 它通常是紫红色 它大多从粮食发酵制成

版权声明

- 本课程由【诺维信】授权提供,选自诺维信《漫游酶世界》系列课程。在此,特别致谢诺维信对"云支教"助学计划的支持,以及对乡村儿童教育发展所做出的贡献。
- 本课程仅用于有爱有未来大学生志愿者及企业志愿者,针对乡村学校开展教育帮扶项目;同时,支持乡村学校用于开展课程教学。
- 未经授权许可,对课程内容进行摘取、复制、传播、修改、出租、售卖,或以其他方式进行处理及衍生其他作品的行为,均构成侵权。
- 任何企业、机构和个人,不得将本课程应用于商业用途。

有爱有未来企业志愿行动 2021年1月19日

云支教助学计划 Online Education Volunteer Project

为响应"乡村振兴"战略,有爱有未来企业志愿行动联合多家专业机构于2018年发起"云支教助学计划",以"互联网+教育扶贫"的创新模式,为企业志愿服务和大学生助学支教提供可持续的教学直播平台,帮助乡村中小学校接触更多优质教育资源,助力乡村教育发展。

截至2020年,共有6家企业志愿者及139所高校大学生响应"云支教",在安徽、青海、云南、海南、甘肃、四川、宁夏等地共计100所乡村学校已开展云支教各类型课程,直接受益学生1,193,372人次。

有爱有未来企业志愿行动 Share the Care Volunteer Organization

有爱有未来企业志愿行动创立于2006年,是国内领先的企业青年志愿服务平台和枢纽机构,服务于FESCO系统4万家中外企业和400万白领员工。有爱有未来长期关注和帮扶弱势儿童群体,是乡村儿童和城市特殊儿童教育援助领域的主要行动者,工作方向涉及乡村教育、环境保护、健康卫生、灾难救助四大领域,志愿服务项目和公益资源网络覆盖全国。

截至目前,有爱有未来已发动超过300家中外企业,在7个省市200所乡村学校开展超过600项/次公益项目和志愿服务活动,参与企业员工及高校大学生志愿者超过155万人次,近50万名乡村师生受益。

联系我们

联系人: Ms. Alina Wang王公佑

Office: 8610-82193926 Mobile: 135 2057 6052

Email: alina_wang@pmacasia.com

